Category: Pentagonal tilings

Order-4-5 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-5 pentagonal honeycomb a regular space-filling tessellation (or honeycomb) with Schläfli symbol {5,4,5}.
Order-3 pentagonal tiling
No description available.
Order-8 pentagonal tiling
In geometry, the order-8 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,8}.
Pentagonal tiling
In geometry, a pentagonal tiling is a tiling of the plane where each individual piece is in the shape of a pentagon. A regular pentagonal tiling on the Euclidean plane is impossible because the intern
Truncated order-4 pentagonal tiling
In geometry, the truncated order-4 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,4}.
Sphinx tiling
In geometry, the sphinx tiling is a tessellation of the plane using the "sphinx", a pentagonal hexiamond formed by gluing six equilateral triangles together. The resultant shape is named for its remin
Truncated order-5 pentagonal tiling
In geometry, the truncated order-5 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{5,5}, constructed from one pentagons and two decagons around every vert
Order-4-4 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-4 pentagonal honeycomb a regular space-filling tessellation (or honeycomb). Each infinite cell consists of a pentagonal tiling whose vertices lie on
Order-4-3 pentagonal honeycomb
In the geometry of hyperbolic 3-space, the order-4-3 pentagonal honeycomb or 5,4,3 honeycomb is a regular space-filling tessellation (or honeycomb). Each infinite cell is an order-4 pentagonal tiling
Truncated order-6 pentagonal tiling
In geometry, the truncated order-6 pentagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t1,2{6,5}.
Order-2 pentagonal tiling
No description available.
Cairo pentagonal tiling
In geometry, a Cairo pentagonal tiling is a tessellation of the Euclidean plane by congruent convex pentagons, formed by overlaying two tessellations of the plane by hexagons and named for its use as
Order-6 pentagonal tiling
In geometry, the order-6 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,6}.
Infinite-order pentagonal tiling
In 2-dimensional hyperbolic geometry, the infinite-order pentagonal tiling is a regular tiling. It has Schläfli symbol of {5,∞}. All vertices are ideal, located at "infinity", seen on the boundary of
Order-5 truncated pentagonal hexecontahedron
The order-5 truncated pentagonal hexecontahedron is a convex polyhedron with 72 faces: 60 hexagons and 12 pentagons triangular, with 210 edges, and 140 vertices. Its dual is the pentakis snub dodecahe
Order-4 pentagonal tiling
In geometry, the order-4 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,4}. It can also be called a pentapentagonal tiling in a bicolored quasiregular form
Order-5 pentagonal tiling
In geometry, the order-5 pentagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {5,5}, constructed from five pentagons around every vertex. As such, it is self-dual.
Binary tiling
In geometry, the binary tiling (sometimes called the Böröczky tiling) is a tiling of the hyperbolic plane, resembling a quadtree over the Poincaré half-plane model of the hyperbolic plane. It was firs