Category: Lipschitz maps

Metric map
In the mathematical theory of metric spaces, a metric map is a function between metric spaces that does not increase any distance (such functions are always continuous).These maps are the morphisms in
Kirszbraun theorem
In mathematics, specifically real analysis and functional analysis, the Kirszbraun theorem states that if U is a subset of some Hilbert space H1, and H2 is another Hilbert space, and is a Lipschitz-co
Lipschitz domain
In mathematics, a Lipschitz domain (or domain with Lipschitz boundary) is a domain in Euclidean space whose boundary is "sufficiently regular" in the sense that it can be thought of as locally being t
Lipschitz continuity
In mathematical analysis, Lipschitz continuity, named after German mathematician Rudolf Lipschitz, is a strong form of uniform continuity for functions. Intuitively, a Lipschitz continuous function is
Modulus of continuity
In mathematical analysis, a modulus of continuity is a function ω : [0, ∞] → [0, ∞] used to measure quantitatively the uniform continuity of functions. So, a function f : I → R admits ω as a modulus o
Picard–Lindelöf theorem
In mathematics – specifically, in differential equations – the Picard–Lindelöf theorem gives a set of conditions under which an initial value problem has a unique solution. It is also known as Picard'
Rademacher's theorem
In mathematical analysis, Rademacher's theorem, named after Hans Rademacher, states the following: If U is an open subset of Rn and f: U → Rm is Lipschitz continuous, then f is differentiable almost e
Hölder condition
In mathematics, a real or complex-valued function f on d-dimensional Euclidean space satisfies a Hölder condition, or is Hölder continuous, when there are nonnegative real constants C, α > 0, such tha
Metric differential
In mathematical analysis, a metric differential is a generalization of a derivative for a Lipschitz continuous function defined on a Euclidean space and taking values in an arbitrary metric space. Wit