- Discrete geometry
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

- Euclidean plane geometry
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

- Mathematics and art
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

- Polyhedra
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

- Polytopes
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

- Symmetry
- >
- Tessellation
- >
- Tilings by face
- >
- Hexagonal tilings

Order-3-7 hexagonal honeycomb

In the geometry of hyperbolic 3-space, the order-3-7 hexagonal honeycomb or (6,3,7 honeycomb) a regular space-filling tessellation (or honeycomb) with Schläfli symbol {6,3,7}.

Order-8 hexagonal tiling

In geometry, the order-8 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,8}.

Alternated order-4 hexagonal tiling

In geometry, the alternated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of (3,4,4), h{6,4}, and hr{6,6}.

Order-2 hexagonal tiling

No description available.

Order-4 hexagonal tiling

In geometry, the order-4 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,4}.

Order-3 hexagonal tiling

No description available.

Truncated order-4 hexagonal tiling

In geometry, the truncated order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,4}. A secondary construction tr{6,6} is called a truncated hexahexagonal

Truncated order-5 hexagonal tiling

In geometry, the truncated order-5 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{6,5}.

Order-5 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-5 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells

Hexagonal tiling honeycomb

In the field of hyperbolic geometry, the hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells composed of an

Cantic order-4 hexagonal tiling

In geometry, the cantic order-4 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t0,1{(4,4,3)} or h2{6,4}.

Hexagonal tiling

In geometry, the hexagonal tiling or hexagonal tessellation is a regular tiling of the Euclidean plane, in which exactly three hexagons meet at each vertex. It has Schläfli symbol of {6,3} or t{3,6} (

Order-6 hexagonal tiling

In geometry, the order-6 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,6} and is self-dual.

Truncated order-8 hexagonal tiling

In geometry, the truncated order-8 hexagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of t{6,8}.

Order-5 hexagonal tiling

In geometry, the order-5 hexagonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {6,5}.

Order-4 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-4 hexagonal tiling honeycomb arises as one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells

Hexagonal tiling-triangular tiling honeycomb

In the geometry of hyperbolic 3-space, the hexagonal tiling-triangular tiling honeycomb is a paracompact uniform honeycomb, constructed from triangular tiling, hexagonal tiling, and trihexagonal tilin

Alternated hexagonal tiling honeycomb

In three-dimensional hyperbolic geometry, the alternated hexagonal tiling honeycomb, h{6,3,3}, or , is a semiregular tessellation with tetrahedron and triangular tiling cells arranged in an octahedron

Truncated order-6 hexagonal tiling

In geometry, the truncated order-6 hexagonal tiling is a uniform tiling of the hyperbolic plane. It has Schläfli symbol of t{6,6}. It can also be identically constructed as a cantic order-6 square til

Octahedral-hexagonal tiling honeycomb

In the geometry of hyperbolic 3-space, the octahedron-hexagonal tiling honeycomb is a paracompact uniform honeycomb, constructed from octahedron, hexagonal tiling, and trihexagonal tiling cells, in a

Infinite-order hexagonal tiling

In 2-dimensional hyperbolic geometry, the infinite-order hexagonal tiling is a regular tiling. It has Schläfli symbol of {6,∞}. All vertices are ideal, located at "infinity", seen on the boundary of t

Order-6 hexagonal tiling honeycomb

In the field of hyperbolic geometry, the order-6 hexagonal tiling honeycomb is one of 11 regular paracompact honeycombs in 3-dimensional hyperbolic space. It is paracompact because it has cells with a

Truncated hexagonal tiling

In geometry, the truncated hexagonal tiling is a semiregular tiling of the Euclidean plane. There are 2 dodecagons (12-sides) and one triangle on each vertex. As the name implies this tiling is constr

© 2023 Useful Links.