# Category: Dual uniform polyhedra

Small rhombidodecacron
In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has
Great disdyakis dodecahedron
In geometry, the great disdyakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great truncated cuboctahedron. It has 48 triangular faces.
Small triambic icosahedron
In geometry, the small triambic icosahedron is a star polyhedron composed of 20 intersecting non-regular hexagon faces. It has 60 edges and 32 vertices, and Euler characteristic of −8. It is an isohed
Dual uniform polyhedron
A dual uniform polyhedron is the dual of a uniform polyhedron. Where a uniform polyhedron is vertex-transitive, a dual uniform polyhedron is face-transitive.
Small icosacronic hexecontahedron
In geometry, the small icosacronic hexecontahedron (or small lanceal trisicosahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kite
Medial hexagonal hexecontahedron
In geometry, the medial hexagonal hexecontahedron (or midly dentoid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform snub icosidodecadodecahedron.
Medial icosacronic hexecontahedron
In geometry, the medial icosacronic hexecontahedron (or midly sagittal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform icosidodecadodecahedron. Its faces are dart
Small hexagrammic hexecontahedron
In geometry, the small hexagrammic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the small retrosnub icosicosidodecahedron. It is partially degenerate, having coincident verti
Great dodecahemidodecacron
In geometry, the great dodecahemidodecacron is the dual of the great dodecahemidodecahedron, and is one of nine dual hemipolyhedra. It appears indistinct from the great icosihemidodecacron. Since the
Great dodecahemicosacron
No description available.
Dual hemipolyhedra
No description available.
Hexahemioctacron
No description available.
Octahemioctacron
No description available.
Great icosihemidodecacron
In geometry, the great icosihemidodecacron is the dual of the great icosihemidodecahedron, and is one of nine dual hemipolyhedra. It appears indistinct from the great dodecahemidodecacron. Since the h
Great dodecacronic hexecontahedron
In geometry, the great dodecacronic hexecontahedron (or great lanceal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great dodecicosidodecahedron. Its 60 interse
Great hexacronic icositetrahedron
In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.
Great stellapentakis dodecahedron
In geometry, the great stellapentakis dodecahedron (or great astropentakis dodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting
Tetrahemihexacron
No description available.
Small dodecicosacron
In geometry, the small dodecicosacron (or small dipteral trisicosahedron) is the dual of the small dodecicosahedron (U50). It is visually identical to the Small ditrigonal dodecacronic hexecontahedron
Small stellapentakis dodecahedron
In geometry, the small stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great dodecahedron. It has 60 intersecting triangular faces.
Rhombicosacron
In geometry, the rhombicosacron (or midly dipteral ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform rhombicosahedron, U56. It has 50 vertices, 120 edges, and 60 cr
Medial disdyakis triacontahedron
In geometry, the medial disdyakis triacontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform truncated dodecadodecahedron. It has 120 triangular faces.
Great pentagrammic hexecontahedron
In geometry, the great pentagrammic hexecontahedron (or great dentoid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the great retrosnub icosidodecahedron. Its 60 faces are
Small dodecahemicosacron
In geometry, the small dodecahemicosacron is the dual of the small dodecahemicosahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the great dodecahemicosacron. Since
Small rhombihexacron
In geometry, the small rhombihexacron (or small dipteral disdodecahedron) is the dual of the small rhombihexahedron. It is visually identical to the small hexacronic icositetrahedron. Its faces are an
Great triakis icosahedron
In geometry, the great triakis icosahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great stellated truncated dodecahedron. Its faces are isosceles triangles. Part of each tr
Small hexagonal hexecontahedron
In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vert
Great pentakis dodecahedron
In geometry, the great pentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small stellated truncated dodecahedron. The pentagonal faces pass close to the center in
Great deltoidal icositetrahedron
In geometry, the great deltoidal icositetrahedron (or great sagittal disdodecahedron) is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the sol
Medial pentagonal hexecontahedron
In geometry, the medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.
Great dirhombicosidodecacron
In geometry, the great dirhombicosidodecacron is a nonconvex isohedral polyhedron. It is the dual of the great dirhombicosidodecahedron. In Magnus Wenninger's Dual Models, it is represented with inter
Great triambic icosahedron
In geometry, the great triambic icosahedron and medial triambic icosahedron (or midly triambic icosahedron) are visually identical dual uniform polyhedra. The exterior surface also represents the De2f
Great rhombidodecacron
In geometry, the great rhombidodecacron (or Great dipteral ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the great rhombidodecahedron. It is visually identical to the great
Medial triambic icosahedron
No description available.
Small dodecahemidodecacron
In geometry, the small dodecahemidodecacron is the dual of the small dodecahemidodecahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small icosihemidodecacron. S
Great rhombic triacontahedron
In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rho
Great icosacronic hexecontahedron
In geometry, the great icosacronic hexecontahedron (or great sagittal trisicosahedron) is the dual of the great icosicosidodecahedron. Its faces are darts. A part of each dart lies inside the solid, h
Small hexacronic icositetrahedron
In geometry, the small hexacronic icositetrahedron is the dual of the small cubicuboctahedron. It is visually identical to the small rhombihexacron. A part of each dart lies inside the solid, hence is
Great dodecicosacron
In geometry, the great dodecicosacron (or great dipteral trisicosahedron) is the dual of the great dodecicosahedron (U63). It has 60 intersecting bow-tie-shaped faces.
Great deltoidal hexecontahedron
In geometry, the great deltoidal hexecontahedron (or great sagittal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually
Small ditrigonal dodecacronic hexecontahedron
In geometry, the small ditrigonal dodecacronic hexecontahedron (or fat star) is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually
Small icosihemidodecacron
In geometry, the small icosihemidodecacron is the dual of the small icosihemidodecahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small dodecahemidodecacron. Si
Great triakis octahedron
In geometry, the great triakis octahedron is the dual of the stellated truncated hexahedron (U19). It has 24 intersecting isosceles triangle faces. Part of each triangle lies within the solid, hence i
Great hexagonal hexecontahedron
In geometry, the great hexagonal hexecontahedron (or great astroid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great snub dodecicosidodecahedron. It is partia
Great ditrigonal dodecacronic hexecontahedron
In geometry, the great ditrigonal dodecacronic hexecontahedron (or great lanceal trisicosahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahe
Tridyakis icosahedron
In geometry, the tridyakis icosahedron is the dual polyhedron of the nonconvex uniform polyhedron, icositruncated dodecadodecahedron. It has 44 vertices, 180 edges, and 120 scalene triangular faces.
Great disnub dirhombidodecacron
No description available.
Medial rhombic triacontahedron
In geometry, the medial rhombic triacontahedron (or midly rhombic triacontahedron) is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small
Medial deltoidal hexecontahedron
In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.
Great rhombihexacron
In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-s