- Affine geometry
- >
- Convex geometry
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Combinatorial optimization
- >
- Linear programming
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Convex geometry
- >
- Polytopes
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Euclidean geometry
- >
- Euclidean solid geometry
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Fields of geometry
- >
- Convex geometry
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Geometric shapes
- >
- Polytopes
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Linear algebra
- >
- Convex geometry
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Multi-dimensional geometry
- >
- Polytopes
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Optimization algorithms and methods
- >
- Linear programming
- >
- Polyhedra
- >
- Dual uniform polyhedra

- Topological spaces
- >
- Polytopes
- >
- Polyhedra
- >
- Dual uniform polyhedra

Small rhombidodecacron

In geometry, the small rhombidodecacron is a nonconvex isohedral polyhedron. It is the dual of the small rhombidodecahedron. It is visually identical to the Small dodecacronic hexecontahedron. It has

Great disdyakis dodecahedron

In geometry, the great disdyakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great truncated cuboctahedron. It has 48 triangular faces.

Small triambic icosahedron

In geometry, the small triambic icosahedron is a star polyhedron composed of 20 intersecting non-regular hexagon faces. It has 60 edges and 32 vertices, and Euler characteristic of −8. It is an isohed

Dual uniform polyhedron

A dual uniform polyhedron is the dual of a uniform polyhedron. Where a uniform polyhedron is vertex-transitive, a dual uniform polyhedron is face-transitive.

Small icosacronic hexecontahedron

In geometry, the small icosacronic hexecontahedron (or small lanceal trisicosahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform small icosicosidodecahedron. Its faces are kite

Medial hexagonal hexecontahedron

In geometry, the medial hexagonal hexecontahedron (or midly dentoid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform snub icosidodecadodecahedron.

Medial icosacronic hexecontahedron

In geometry, the medial icosacronic hexecontahedron (or midly sagittal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform icosidodecadodecahedron. Its faces are dart

Small hexagrammic hexecontahedron

In geometry, the small hexagrammic hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the small retrosnub icosicosidodecahedron. It is partially degenerate, having coincident verti

Great dodecahemidodecacron

In geometry, the great dodecahemidodecacron is the dual of the great dodecahemidodecahedron, and is one of nine dual hemipolyhedra. It appears indistinct from the great icosihemidodecacron. Since the

Great dodecahemicosacron

No description available.

Dual hemipolyhedra

No description available.

Hexahemioctacron

No description available.

Octahemioctacron

No description available.

Great icosihemidodecacron

In geometry, the great icosihemidodecacron is the dual of the great icosihemidodecahedron, and is one of nine dual hemipolyhedra. It appears indistinct from the great dodecahemidodecacron. Since the h

Great dodecacronic hexecontahedron

In geometry, the great dodecacronic hexecontahedron (or great lanceal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great dodecicosidodecahedron. Its 60 interse

Great hexacronic icositetrahedron

In geometry, the great hexacronic icositetrahedron is the dual of the great cubicuboctahedron. Its faces are kites. Part of each kite lies inside the solid, hence is invisible in solid models.

Great stellapentakis dodecahedron

In geometry, the great stellapentakis dodecahedron (or great astropentakis dodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the truncated great icosahedron. It has 60 intersecting

Tetrahemihexacron

No description available.

Small dodecicosacron

In geometry, the small dodecicosacron (or small dipteral trisicosahedron) is the dual of the small dodecicosahedron (U50). It is visually identical to the Small ditrigonal dodecacronic hexecontahedron

Small stellapentakis dodecahedron

In geometry, the small stellapentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the truncated great dodecahedron. It has 60 intersecting triangular faces.

Rhombicosacron

In geometry, the rhombicosacron (or midly dipteral ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform rhombicosahedron, U56. It has 50 vertices, 120 edges, and 60 cr

Medial disdyakis triacontahedron

In geometry, the medial disdyakis triacontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform truncated dodecadodecahedron. It has 120 triangular faces.

Great pentagrammic hexecontahedron

In geometry, the great pentagrammic hexecontahedron (or great dentoid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the great retrosnub icosidodecahedron. Its 60 faces are

Small dodecahemicosacron

In geometry, the small dodecahemicosacron is the dual of the small dodecahemicosahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the great dodecahemicosacron. Since

Small rhombihexacron

In geometry, the small rhombihexacron (or small dipteral disdodecahedron) is the dual of the small rhombihexahedron. It is visually identical to the small hexacronic icositetrahedron. Its faces are an

Great triakis icosahedron

In geometry, the great triakis icosahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform great stellated truncated dodecahedron. Its faces are isosceles triangles. Part of each tr

Small hexagonal hexecontahedron

In geometry, the small hexagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small snub icosicosidodecahedron. It is partially degenerate, having coincident vert

Great pentakis dodecahedron

In geometry, the great pentakis dodecahedron is a nonconvex isohedral polyhedron. It is the dual of the uniform small stellated truncated dodecahedron. The pentagonal faces pass close to the center in

Great deltoidal icositetrahedron

In geometry, the great deltoidal icositetrahedron (or great sagittal disdodecahedron) is the dual of the nonconvex great rhombicuboctahedron. Its faces are darts. Part of each dart lies inside the sol

Medial pentagonal hexecontahedron

In geometry, the medial pentagonal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the snub dodecadodecahedron. It has 60 intersecting irregular pentagonal faces.

Great dirhombicosidodecacron

In geometry, the great dirhombicosidodecacron is a nonconvex isohedral polyhedron. It is the dual of the great dirhombicosidodecahedron. In Magnus Wenninger's Dual Models, it is represented with inter

Great triambic icosahedron

In geometry, the great triambic icosahedron and medial triambic icosahedron (or midly triambic icosahedron) are visually identical dual uniform polyhedra. The exterior surface also represents the De2f

Great rhombidodecacron

In geometry, the great rhombidodecacron (or Great dipteral ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the great rhombidodecahedron. It is visually identical to the great

Medial triambic icosahedron

No description available.

Small dodecahemidodecacron

In geometry, the small dodecahemidodecacron is the dual of the small dodecahemidodecahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small icosihemidodecacron. S

Great rhombic triacontahedron

In geometry, the great rhombic triacontahedron is a nonconvex isohedral, isotoxal polyhedron. It is the dual of the great icosidodecahedron (U54). Like the convex rhombic triacontahedron it has 30 rho

Great icosacronic hexecontahedron

In geometry, the great icosacronic hexecontahedron (or great sagittal trisicosahedron) is the dual of the great icosicosidodecahedron. Its faces are darts. A part of each dart lies inside the solid, h

Small hexacronic icositetrahedron

In geometry, the small hexacronic icositetrahedron is the dual of the small cubicuboctahedron. It is visually identical to the small rhombihexacron. A part of each dart lies inside the solid, hence is

Great dodecicosacron

In geometry, the great dodecicosacron (or great dipteral trisicosahedron) is the dual of the great dodecicosahedron (U63). It has 60 intersecting bow-tie-shaped faces.

Great deltoidal hexecontahedron

In geometry, the great deltoidal hexecontahedron (or great sagittal ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the nonconvex great rhombicosidodecahedron. It is visually

Small ditrigonal dodecacronic hexecontahedron

In geometry, the small ditrigonal dodecacronic hexecontahedron (or fat star) is a nonconvex isohedral polyhedron. It is the dual of the uniform small ditrigonal dodecicosidodecahedron. It is visually

Small icosihemidodecacron

In geometry, the small icosihemidodecacron is the dual of the small icosihemidodecahedron, and is one of nine dual hemipolyhedra. It appears visually indistinct from the small dodecahemidodecacron. Si

Great triakis octahedron

In geometry, the great triakis octahedron is the dual of the stellated truncated hexahedron (U19). It has 24 intersecting isosceles triangle faces. Part of each triangle lies within the solid, hence i

Great hexagonal hexecontahedron

In geometry, the great hexagonal hexecontahedron (or great astroid ditriacontahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great snub dodecicosidodecahedron. It is partia

Great ditrigonal dodecacronic hexecontahedron

In geometry, the great ditrigonal dodecacronic hexecontahedron (or great lanceal trisicosahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great ditrigonal dodecicosidodecahe

Tridyakis icosahedron

In geometry, the tridyakis icosahedron is the dual polyhedron of the nonconvex uniform polyhedron, icositruncated dodecadodecahedron. It has 44 vertices, 180 edges, and 120 scalene triangular faces.

Great disnub dirhombidodecacron

No description available.

Medial rhombic triacontahedron

In geometry, the medial rhombic triacontahedron (or midly rhombic triacontahedron) is a nonconvex isohedral polyhedron. It is a stellation of the rhombic triacontahedron, and can also be called small

Medial deltoidal hexecontahedron

In geometry, the medial deltoidal hexecontahedron is a nonconvex isohedral polyhedron. It is the dual of the rhombidodecadodecahedron. Its 60 intersecting quadrilateral faces are kites.

Great rhombihexacron

In geometry, the great rhombihexacron (or great dipteral disdodecahedron) is a nonconvex isohedral polyhedron. It is the dual of the uniform great rhombihexahedron (U21). It has 24 identical bow-tie-s

© 2023 Useful Links.