Mathematical optimization | Relaxation (approximation) | Approximations

Relaxation (approximation)

In mathematical optimization and related fields, relaxation is a modeling strategy. A relaxation is an approximation of a difficult problem by a nearby problem that is easier to solve. A solution of the relaxed problem provides information about the original problem. For example, a linear programming relaxation of an integer programming problem removes the integrality constraint and so allows non-integer rational solutions. A Lagrangian relaxation of a complicated problem in combinatorial optimization penalizes violations of some constraints, allowing an easier relaxed problem to be solved. Relaxation techniques complement or supplement branch and bound algorithms of combinatorial optimization; linear programming and Lagrangian relaxations are used to obtain bounds in branch-and-bound algorithms for integer programming. The modeling strategy of relaxation should not be confused with iterative methods of relaxation, such as successive over-relaxation (SOR); iterative methods of relaxation are used in solving problems in differential equations, linear least-squares, and linear programming. However, iterative methods of relaxation have been used to solve Lagrangian relaxations. (Wikipedia).

Video thumbnail

Linear Approximations and Differentials

Linear Approximation In this video, I explain the concept of a linear approximation, which is just a way of approximating a function of several variables by its tangent planes, and I illustrate this by approximating complicated numbers f without using a calculator. Enjoy! Subscribe to my

From playlist Partial Derivatives

Video thumbnail

Polynomial approximations -- Calculus II

This lecture is on Calculus II. It follows Part II of the book Calculus Illustrated by Peter Saveliev. The text of the book can be found at http://calculus123.com.

From playlist Calculus II

Video thumbnail

Approximating Functions in a Metric Space

Approximations are common in many areas of mathematics from Taylor series to machine learning. In this video, we will define what is meant by a best approximation and prove that a best approximation exists in a metric space. Chapters 0:00 - Examples of Approximation 0:46 - Best Aproximati

From playlist Approximation Theory

Video thumbnail

(8.1) A General Approach to Nonlinear Differential Questions

This video briefly describes the approach to gaining information about the solution to nonlinear differential equations. https://mathispower4u.com

From playlist Differential Equations: Complete Set of Course Videos

Video thumbnail

Minimax Approximation and the Exchange Algorithm

In this video we'll discuss minimax approximation. This is a method of approximating functions by minimisation of the infinity (uniform) norm. The exchange algorithm is an iterative method of finding the approximation which minimises the infinity norm. FAQ : How do you make these animatio

From playlist Approximation Theory

Video thumbnail

Polynomial approximation of functions (part 1)

Using a polynomial to approximate a function at f(0). More free lessons at: http://www.khanacademy.org/video?v=sy132cgqaiU

From playlist Calculus

Video thumbnail

Approximating Max Cut with Subexponential Linear Programs - Tselil Schramm

Computer Science/Discrete Mathematics Seminar I Topic: Approximating Max Cut with Subexponential Linear Programs Speaker: Tselil Schramm Affiliation: Stanford University Date: March 29, 2021 For more video please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

C34 Expanding this method to higher order linear differential equations

I this video I expand the method of the variation of parameters to higher-order (higher than two), linear ODE's.

From playlist Differential Equations

Video thumbnail

A Framework for Quadratic Form Maximization over Convex Sets -Vijay Bhattiprolu

Computer Science/Discrete Mathematics Seminar II Topic: A Framework for Quadratic Form Maximization over Convex Sets Speaker: Vijay Bhattiprolu Affiliation: Member, School of Mathematics Date: April 28, 2020 For more video please visit http://video.ias.edu

From playlist Mathematics

Video thumbnail

Phonon Transport in Ultrahigh Thermal Conductivity Materials beyond the... by Nikhil Malviya

DISCUSSION MEETING : APS SATELLITE MEETING AT ICTS ORGANIZERS : Ranjini Bandyopadhyay (RRI, India), Subhro Bhattacharjee (ICTS-TIFR, India), Arindam Ghosh (IISc, India), Shobhana Narasimhan (JNCASR, India) and Sumantra Sarkar (IISc, India) DATE & TIME: 15 March 2022 to 18 March 2022 VEN

From playlist APS Satellite Meeting at ICTS-2022

Video thumbnail

Sarah Morell: Single Source Unsplittable Flows with Arc-Wise Lower and Upper Bounds

In a digraph with a source and several destination nodes with associated demands, an unsplittable flow routes each demand along a single path from the common source to its destination. Given some flow x that is not necessarily unsplittable but satisfies all demands, we ask for an unsplitta

From playlist Workshop: Approximation and Relaxation

Video thumbnail

Karthik Chandrasekaran: lp-Norm Multiway Cut

In lp-norm multiway cut, the input is an undirected graph with non-negative edge weights along with k terminals and the goal is to find a partition of the vertex set into k parts each containing exactly one terminal so as to minimize the lp-norm of the cut values of the parts. This is a un

From playlist Workshop: Approximation and Relaxation

Video thumbnail

17. Solutions to Boltzmann Equation: Diffusion Laws

MIT 2.57 Nano-to-Micro Transport Processes, Spring 2012 View the complete course: http://ocw.mit.edu/2-57S12 Instructor: Gang Chen License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 2.57 Nano-to-Micro Transport Processes, Spring 2012

Video thumbnail

Nexus Trimester - Sudipto Guha (University of Pennsylvania)

Convex Programming in Small Space Sudipto Guha (University of Pennsylvania) March 09, 2016 Abstract: I plan to talk about solving convex programs in small space - focusing on applications in streaming algorithms and distributed computing, in problems such as maximum matching and correlati

From playlist 2016-T1 - Nexus of Information and Computation Theory - CEB Trimester

Video thumbnail

B04 Example problem of simple harmonic oscillation

Solving an example problem of simple harmonic oscillation, which requires calculating the solution to a second order ordinary differential equation.

From playlist Physics ONE

Video thumbnail

Find the particular solution given the conditions and second derivative

Learn how to solve the particular solution of differential equations. A differential equation is an equation that relates a function with its derivatives. The solution to a differential equation involves two parts: the general solution and the particular solution. The general solution give

From playlist Solve Differential Equation (Particular Solution) #Integration

Video thumbnail

Damien Furfaro: A simple HLLC-type Riemann solver for compressible non-equilibrium two-phase flows

Find this video and other talks given by worldwide mathematicians on CIRM's Audiovisual Mathematics Library: http://library.cirm-math.fr. And discover all its functionalities: - Chapter markers and keywords to watch the parts of your choice in the video - Videos enriched with abstracts, b

From playlist Mathematical Physics

Related pages

Linear programming relaxation | Branch and bound | Successive over-relaxation | Iterative method | Mathematical optimization | Lagrangian relaxation | Approximation | Partial differential equation | Integer programming | Mathematical model | Linear programming