Geometric algebra

Outermorphism

In geometric algebra, the outermorphism of a linear function between vector spaces is a natural extension of the map to arbitrary multivectors. It is the unique unital algebra homomorphism of exterior algebras whose restriction to the vector spaces is the original function. (Wikipedia).

Video thumbnail

What is the difference between convex and concave

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Where does the exterior angle theorem come from

👉 Learn about the interior and the exterior angles of a polygon. A polygon is a plane shape bounded by a finite chain of straight lines. The interior angle of a polygon is the angle between two sides of the polygon. The sum of the interior angles of a regular polygon is given by the formul

From playlist Interior and Exterior Angles of Polygons

Video thumbnail

What is a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Sketch a figure from a net

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between convex and concave polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What are four types of polygons

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Interior and Exterior Angles

"Interior and exterior angles of regular and irregular polygons."

From playlist Shape: Angles

Video thumbnail

What is a concave polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is the difference between a regular and irregular polygon

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

What is a polygon and what is a non example of a one

👉 Learn about polygons and how to classify them. A polygon is a plane shape bounded by a finite chain of straight lines. A polygon can be concave or convex and it can also be regular or irregular. A concave polygon is a polygon in which at least one of its interior angles is greater than 1

From playlist Classify Polygons

Video thumbnail

Geometric Algebra - Linear Transformations, Outermorphism, and the Determinant

In this video, we will review some basic concepts from linear algebra, such as the linear transformation, prove important theorems which ground matrix operations, extend the linear transformation on vectors to higher-graded elements to bivectors and trivectors, and define the determinant o

From playlist Geometric Algebra

Related pages

Geometric calculus | Linear map | Eigenvalues and eigenvectors | Identity function | Transpose | Vector space | Algebra homomorphism | Determinant | Rotor (mathematics) | Multivector | Up to | Exterior algebra | Geometric algebra | Pseudoscalar