Theorems in complex analysis

Morera's theorem

In complex analysis, a branch of mathematics, Morera's theorem, named after Giacinto Morera, gives an important criterion for proving that a function is holomorphic. Morera's theorem states that a continuous, complex-valued function f defined on an open set D in the complex plane that satisfies for every closed piecewise C1 curve in D must be holomorphic on D. The assumption of Morera's theorem is equivalent to f locally having an antiderivative on D. The converse of the theorem is not true in general. A holomorphic function need not possess an antiderivative on its domain, unless one imposes additional assumptions. The converse does hold e.g. if the domain is simply connected; this is Cauchy's integral theorem, stating that the line integral of a holomorphic function along a closed curve is zero. The standard counterexample is the function f(z) = 1/z, which is holomorphic on C − {0}. On any simply connected neighborhood U in C − {0}, 1/z has an antiderivative defined by L(z) = ln(r) + iθ, where z = reiθ. Because of the ambiguity of θ up to the addition of any integer multiple of 2π, any continuous choice of θ on U will suffice to define an antiderivative of 1/z on U. (It is the fact that θ cannot be defined continuously on a simple closed curve containing the origin in its interior that is the root of why 1/z has no antiderivative on its entire domain C − {0}.) And because the derivative of an additive constant is 0, any constant may be added to the antiderivative and it's still an antiderivative of 1/z. In a certain sense, the 1/z counterexample is universal: For every analytic function that has no antiderivative on its domain, the reason for this is that 1/z itself does not have an antiderivative on C − {0}. (Wikipedia).

Morera's theorem
Video thumbnail

Morera's Theorem and Corollaries -- Complex Analysis 14

⭐Support the channel⭐ Patreon: https://www.patreon.com/michaelpennmath Merch: https://teespring.com/stores/michael-penn-math My amazon shop: https://www.amazon.com/shop/michaelpenn ⭐my other channels⭐ Main Channel: https://www.youtube.com/michaelpennmath non-math podcast: http

From playlist Complex Analysis

Video thumbnail

Math 135 Complex Analysis Lecture 11 022415: Consequences of the Cauchy Integral Formula

Simple calculations using the Cauchy Integral Formula; Cauchy's integral formula for derivatives; Morera's Formula; observation regarding removable singularities; Cauchy's inequality; first Liouville's theorem; Fundamental Theorem of Algebra

From playlist Course 8: Complex Analysis

Video thumbnail

Sequences of Complex Functions -- Complex Analysis 16

⭐Support the channel⭐ Patreon: https://www.patreon.com/michaelpennmath Merch: https://teespring.com/stores/michael-penn-math My amazon shop: https://www.amazon.com/shop/michaelpenn ⭐my other channels⭐ Main Channel: https://www.youtube.com/michaelpennmath non-math podcast: http

From playlist Complex Analysis

Video thumbnail

Complex analysis: Cauchy's integral formula

This lecture is part of an online undergraduate course on complex analysis. We state and prove Cauchy's integral formula. We then discuss some of it many applications; for example, Taylor series, Liouville's theorem, and Morera's theorem. For the other lectures in the course see https:/

From playlist Complex analysis

Video thumbnail

The Complex Green's Theorem -- Complex Analysis 15

⭐Support the channel⭐ Patreon: https://www.patreon.com/michaelpennmath Merch: https://teespring.com/stores/michael-penn-math My amazon shop: https://www.amazon.com/shop/michaelpenn ⭐my other channels⭐ Main Channel: https://www.youtube.com/michaelpennmath non-math podcast: http

From playlist Complex Analysis

Video thumbnail

The Velvet Worm Looks Like It’s From Another Planet

This creature has two hot glue guns that shoot ultra sticky goo out of its head. This is the velvet worm. | BetterHelp wants to match you with a therapist that works best for you. Visit https://betterhelp.com/animalogic and get 10% off your first month! Thanks for sponsoring this episode

From playlist Animalogic

Video thumbnail

Calculus - The Fundamental Theorem, Part 1

The Fundamental Theorem of Calculus. First video in a short series on the topic. The theorem is stated and two simple examples are worked.

From playlist Calculus - The Fundamental Theorem of Calculus

Video thumbnail

Dimitri Zvonkine - On two ELSV formulas

The ELSV formula (discovered by Ekedahl, Lando, Shapiro and Vainshtein) is an equality between two numbers. The first one is a Hurwitz number that can be defined as the number of factorizations of a given permutation into transpositions. The second is the integral of a characteristic class

From playlist 4th Itzykson Colloquium - Moduli Spaces and Quantum Curves

Video thumbnail

Differential Equations | Application of Abel's Theorem Example 2

We give an example of applying Abel's Theorem to construct a second solution to a differential equation given one solution. www.michael-penn.net

From playlist Differential Equations

Video thumbnail

Calculus - The Fundamental Theorem, Part 3

The Fundamental Theorem of Calculus. Specific examples of simple functions, and how the antiderivative of these functions relates to the area under the graph.

From playlist Calculus - The Fundamental Theorem of Calculus

Video thumbnail

Change of variables and the derivative -- Calculus I

This lecture is on Calculus I. It follows Part I of the book Calculus Illustrated by Peter Saveliev. The text of the book can be found at http://calculus123.com.

From playlist Calculus I

Video thumbnail

Calculus 5.3 The Fundamental Theorem of Calculus

My notes are available at http://asherbroberts.com/ (so you can write along with me). Calculus: Early Transcendentals 8th Edition by James Stewart

From playlist Calculus

Video thumbnail

Apply the FTOC to evaluate the integral with functions as the bounds

👉 Learn about the fundamental theorem of calculus. The fundamental theorem of calculus is a theorem that connects the concept of differentiation with the concept of integration. The theorem is basically saying that the differentiation of the integral of a function yields the original funct

From playlist Evaluate Using The Second Fundamental Theorem of Calculus

Video thumbnail

Calculus 1 (Stewart) Ep 22, Mean Value Theorem (Oct 28, 2021)

This is a recording of a live class for Math 1171, Calculus 1, an undergraduate course for math majors (and others) at Fairfield University, Fall 2021. The textbook is Stewart. PDF of the written notes, and a list of all episodes is at the class website. Class website: http://cstaecker.f

From playlist Math 1171 (Calculus 1) Fall 2021

Video thumbnail

Equidistribution of Unipotent Random Walks on Homogeneous spaces by Emmanuel Breuillard

PROGRAM : ERGODIC THEORY AND DYNAMICAL SYSTEMS (HYBRID) ORGANIZERS : C. S. Aravinda (TIFR-CAM, Bengaluru), Anish Ghosh (TIFR, Mumbai) and Riddhi Shah (JNU, New Delhi) DATE : 05 December 2022 to 16 December 2022 VENUE : Ramanujan Lecture Hall and Online The programme will have an emphasis

From playlist Ergodic Theory and Dynamical Systems 2022

Video thumbnail

Calculus - The Fundamental Theorem, Part 5

The Fundamental Theorem of Calculus. How an understanding of an incremental change in area helps lead to the fundamental theorem

From playlist Calculus - The Fundamental Theorem of Calculus

Video thumbnail

What is Green's theorem? Chris Tisdell UNSW

This lecture discusses Green's theorem in the plane. Green's theorem not only gives a relationship between double integrals and line integrals, but it also gives a relationship between "curl" and "circulation". In addition, Gauss' divergence theorem in the plane is also discussed, whic

From playlist Vector Calculus @ UNSW Sydney. Dr Chris Tisdell

Related pages

Line integral | Complex analysis | Fubini's theorem | Continuous function | Mittag-Leffler's theorem | Residue (complex analysis) | Banach space | Giacinto Morera | Complex plane | Bounded function | Gamma function | Connected space | Cauchy–Riemann equations | Function (mathematics) | Mathematics | Riemann zeta function | Weierstrass M-test | Holomorphic function | Characterization (mathematics) | Complex number | Cauchy's integral theorem | Analyticity of holomorphic functions | Uniform convergence | Antiderivative (complex analysis) | Open set