Number theoretic algorithms | Modular arithmetic | Cryptographic algorithms

Modular exponentiation

Modular exponentiation is exponentiation performed over a modulus. It is useful in computer science, especially in the field of public-key cryptography, where it is used in both Diffie-Hellman Key Exchange and RSA public/private keys. Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = be mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 53 = 125 by 13 leaves a remainder of c = 8. Modular exponentiation can be performed with a negative exponent e by finding the modular multiplicative inverse d of b modulo m using the extended Euclidean algorithm. That is: c = be mod m = d−e mod m, where e < 0 and b ⋅ d ≡ 1 (mod m). Modular exponentiation is efficient to compute, even for very large integers. On the other hand, computing the modular discrete logarithm – that is, finding the exponent e when given b, c, and m – is believed to be difficult. This one-way function behavior makes modular exponentiation a candidate for use in cryptographic algorithms. (Wikipedia).

Video thumbnail

Modular Forms | Modular Forms; Section 1 2

We define modular forms, and borrow an idea from representation theory to construct some examples. My Twitter: https://twitter.com/KristapsBalodi3 Fourier Theory (0:00) Definition of Modular Forms (8:02) In Search of Modularity (11:38) The Eisenstein Series (18:25)

From playlist Modular Forms

Video thumbnail

Modular forms: Eisenstein series

This lecture is part of an online graduate course on modular forms. We give two ways of looking at modular forms: as functions of lattices in C, or as invariant forms. We use this to give two different ways of constructing Eisenstein series. For the other lectures in the course see http

From playlist Modular forms

Video thumbnail

Number Theory | Modular Inverses: Example

We give an example of calculating inverses modulo n using two separate strategies.

From playlist Modular Arithmetic and Linear Congruences

Video thumbnail

Modular Exponentiation Quiz - Applied Cryptography

This video is part of an online course, Applied Cryptography. Check out the course here: https://www.udacity.com/course/cs387.

From playlist Applied Cryptography

Video thumbnail

Modular forms: Introduction

This lecture is part of an online graduate course on modular forms. We introduce modular forms, and give several examples of how they were used to solve problems in apparently unrelated areas of mathematics. I will not be following any particular book, but if anyone wants a suggestion

From playlist Modular forms

Video thumbnail

Applying the rules of exponents to simplify an expression with numbers

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

How to solve an equation with fraction powers in your exponent

👉 Learn how to deal with Rational Powers or Exponents. Exponents are shorthand for repeated multiplication of the same thing by itself. This process of using exponents is called "raising to a power", where the exponent is the "power". Rational exponents are exponents that are fractions. To

From playlist Solve Equations with Fractional Exponents

Video thumbnail

How Does the Rules of Exponents Allows to Multiply and Divide by Monomials

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Simplifying Expressions by Using the Product Rule of Exponents

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Compatibility of Explicit Reciprocity Laws by Shanwen Wang

Program Recent developments around p-adic modular forms (ONLINE) ORGANIZERS: Debargha Banerjee (IISER Pune, India) and Denis Benois (University of Bordeaux, France) DATE: 30 November 2020 to 04 December 2020 VENUE: Online This is a follow up of the conference organized last year arou

From playlist Recent Developments Around P-adic Modular Forms (Online)

Video thumbnail

BIG Exponents - Modular Exponentiation, Fermat's, Euler's

How to deal with really big exponents using the three main methods: Modular Exponentiation, Fermat's Little Theorem, and Euler's Theorem. Also explains which method to pick. Table of contents: Which to pick? - 0:47 Fermat's Example - 1:39 Modular Exponentiation Example - 4:43 Euler's Exam

From playlist Cryptography and Coding Theory

Video thumbnail

Resurgence and Partial Theta Series by David Sauzin

Title: Resurgence and Partial Theta Series Speaker: David Sauzin (Institute of Celestial Mechanics and Computation of the Ephemerides, Paris) Date: Friday, 05th August, 2022 Time: 11:00 am (IST) Venue: Hybrid Mode - Offline: Madhava Lecture Hall

From playlist Seminar Series

Video thumbnail

Jonathan Pila - Multiplicative relations among singular moduli

December 15, 2014 - Analysis, Spectra, and Number theory: A conference in honor of Peter Sarnak on his 61st birthday. I will report on some joint work with Jacob Tsimerman concerning multiplicative relations among singular moduli. Our results rely on the "Ax-Schanuel'' theorem for the j

From playlist Analysis, Spectra, and Number Theory - A Conference in Honor of Peter Sarnak on His 61st Birthday

Video thumbnail

Introduction To Beilinson--Kato Elements And Their Applications 2 by Chan-Ho Kim

PROGRAM : ELLIPTIC CURVES AND THE SPECIAL VALUES OF L-FUNCTIONS (ONLINE) ORGANIZERS : Ashay Burungale (California Institute of Technology, USA), Haruzo Hida (University of California, Los Angeles, USA), Somnath Jha (IIT - Kanpur, India) and Ye Tian (Chinese Academy of Sciences, China) DA

From playlist Elliptic Curves and the Special Values of L-functions (ONLINE)

Video thumbnail

Markus Reineke - Cohomological Hall Algebras and Motivic Invariants for Quivers 3/4

We motivate, define and study Donaldson-Thomas invariants and Cohomological Hall algebras associated to quivers, relate them to the geometry of moduli spaces of quiver representations and (in special cases) to Gromov-Witten invariants, and discuss the algebraic structure of Cohomological H

From playlist 2021 IHES Summer School - Enumerative Geometry, Physics and Representation Theory

Video thumbnail

Rahul Pandharipande - Enumerative Geometry of Curves, Maps, and Sheaves 4/5

The main topics will be the intersection theory of tautological classes on moduli space of curves, the enumeration of stable maps via Gromov-Witten theory, and the enumeration of sheaves via Donaldson-Thomas theory. I will cover a mix of classical and modern results. My goal will be, by th

From playlist 2021 IHES Summer School - Enumerative Geometry, Physics and Representation Theory

Video thumbnail

Héctor H. Pastén Vásquez: Shimura curves and bounds for the abc conjecture

Abstract: I will explain some new connections between the abc conjecture and modular forms. In particular, I will outline a proof of a new unconditional estimate for the abc conjecture, which lies beyond the existing techniques in this context. The proof involves a number of tools such as

From playlist Algebraic and Complex Geometry

Video thumbnail

Simplify Exponents Using Product and Quotient

👉 Learn about the rules of exponents. An exponent is a number which a number is raised to, to produce a power. It is the number of times which a number will multiply itself in a power. There are several rules used in evaluating exponents. Some of the rules includes: the product rule, which

From playlist Simplify Using the Rules of Exponents

Video thumbnail

Haluk SENGUN - Cohomology of arithmetic groups and number theory: geometric, ... 2

In this lecture series, the first part will be dedicated to cohomology of arithmetic groups of lower ranks (e.g., Bianchi groups), their associated geometric models (mainly from hyperbolic geometry) and connexion to number theory. The second part will deal with higher rank groups, mainly

From playlist École d'Été 2022 - Cohomology Geometry and Explicit Number Theory

Related pages

Fibonacci number | Exponentiation | Extended Euclidean algorithm | MATLAB | HP Prime | Big O notation | Lua (programming language) | The Art of Computer Programming | Companion matrix | Diffie–Hellman key exchange | GNU Multiple Precision Arithmetic Library | RSA (cryptosystem) | One-way function | Reversible computing | Kochanski multiplication | Modulo operation | Discrete logarithm | Barrett reduction | Bit | Constant-recursive sequence | Exponentiation by squaring | Public-key cryptography | Modular arithmetic | Modular multiplicative inverse | Shor's algorithm | Quantum computing