Lattice theory | Matroid theory

Geometric lattice

In the mathematics of matroids and lattices, a geometric lattice is a finite atomistic semimodular lattice, and a matroid lattice is an atomistic semimodular lattice without the assumption of finiteness. Geometric lattices and matroid lattices, respectively, form the lattices of flats of finite and infinite matroids, and every geometric or matroid lattice comes from a matroid in this way. (Wikipedia).

Video thumbnail

What is the definition of a geometric sequence

👉 Learn about sequences. A sequence is a list of numbers/values exhibiting a defined pattern. A number/value in a sequence is called a term of the sequence. There are many types of sequence, among which are: arithmetic and geometric sequence. An arithmetic sequence is a sequence in which

From playlist Sequences

Video thumbnail

How to determine the rule for a geometric sequence given two values

👉 Learn how to write the explicit formula for a geometric sequence. A sequence is a list of numbers/values exhibiting a defined pattern. A number/value in a sequence is called a term of the sequence. A geometric sequence is a sequence in which each term of the sequence is obtained by multi

From playlist Sequences

Video thumbnail

Learn how to determine the sum of a geometric finite series

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Video thumbnail

Evaluating the partial sum of a geometric series

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Video thumbnail

What is a geometric mean

Learn about the geometric mean of numbers. The geometric mean of n numbers is the nth root of the product of the numbers. To find the geometric mean of n numbers, we first multiply the numbers and then take the nth root of the product.

From playlist Geometry - GEOMETRIC MEAN

Video thumbnail

Learning to find the partial sum of a geometric series

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Video thumbnail

How to determine the infinite sum of a geometric series

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Video thumbnail

Learn to write the explicit formula for the geometric sequence

👉 Learn how to write the explicit formula for a geometric sequence. A sequence is a list of numbers/values exhibiting a defined pattern. A number/value in a sequence is called a term of the sequence. A geometric sequence is a sequence in which each term of the sequence is obtained by multi

From playlist Sequences

Video thumbnail

Learn to find the partial sum of a geometric sequence

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Video thumbnail

Electronic transport properties of the α − T3 lattice by T K Ghosh

DISCUSSION MEETING GEOMETRIC PHASES IN OPTICS AND TOPOLOGICAL MATTER ORGANIZERS: Subhro Bhattacharjee, Joseph Samuel and Supurna Sinha DATE: 21 January 2020 to 24 January 2020 VENUE: Madhava Lecture Hall, ICTS, Bangalore This is a joint ICTS-RRI Discussion Meeting on the geometric pha

From playlist Geometric Phases in Optics and Topological Matter 2020

Video thumbnail

Boris Apanasov: Non-rigidity for Hyperbolic Lattices and Geometric Analysis

Boris Apanasov, University of Oklahoma Title: Non-rigidity for Hyperbolic Lattices and Geometric Analysis We create a conformal analogue of the M. Gromov-I. Piatetski-Shapiro interbreeding construction to obtain non-faithful representations of uniform hyperbolic 3-lattices with arbitrarily

From playlist 39th Annual Geometric Topology Workshop (Online), June 6-8, 2022

Video thumbnail

3d N = 4 Super-Yang-Mills on a Lattice by Arthur Lipstein

Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography DATE:27 January 2018 to 03 February 2018 VENUE:Ramanujan Lecture Hall, ICTS Bangalore The program "Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography" aims to

From playlist Nonperturbative and Numerical Approaches to Quantum Gravity, String Theory and Holography

Video thumbnail

Frank Gounelas : Rational curves on K3 surfaces

Bogomolov and Mumford proved that every complex projective K3 surface contains a rational curve. Since then, a lot of progress has been made by Bogomolov, Chen, Hassett, Li, Liedtke, Tschinkel and others, towards the stronger statement that any such surface in fact contains infinitely many

From playlist Algebraic and Complex Geometry

Video thumbnail

Weakly Modular Functions | The Geometry of SL2,Z, Section 1.4

We provide an alternative motivation for the definition of weakly modular functions. My Twitter: https://twitter.com/KristapsBalodi3 Weakly Modular Functions (0:00) Boring Functions on Compact Riemann Surfaces (2:06) Transforming the Transformation Property (9:15)

From playlist The Geometry of SL(2,Z)

Video thumbnail

Integral structures on de Rham cohomology

B. Bhatt (IAS) Integral structures on de Rham cohomology Conférence de mi-parcours du programme ANR Théorie de Hodge p-adique et Développements (ThéHopaD)­ 25-27 septembre 2013 Centre de conférences Marilyn et James Simons IHÉS Bures / Yvette France

From playlist Conférence de mi-parcours du programme ANRThéorie de Hodge p-adique et Développements (ThéHopaD)­25-27 septembre 2013

Video thumbnail

Lec 24 | MIT 6.451 Principles of Digital Communication II

Linear Gaussian Channels View the complete course: http://ocw.mit.edu/6-451S05 License: Creative Commons BY-NC-SA More information at http://ocw.mit.edu/terms More courses at http://ocw.mit.edu

From playlist MIT 6.451 Principles of Digital Communication II

Video thumbnail

Pancharatnam-Zak phase by Vivek Vyas

DISCUSSION MEETING : GEOMETRIC PHASES IN OPTICS AND TOPOLOGICAL MATTER ORGANIZERS : Subhro Bhattacharjee, Joseph Samuel and Supurna Sinha DATE : 21 January 2020 to 24 January 2020 VENUE : Madhava Lecture Hall, ICTS, Bangalore This is a joint ICTS-RRI Discussion Meeting on the geometric

From playlist Geometric Phases in Optics and Topological Matter 2020

Video thumbnail

Geometric structures and thin groups I - Alan Reid

Speaker: Alan Reid (UT Austin/IAS) Title: Geometric structures and thin groups I Abstract: In these two talks we will discuss situations in which geometric input can be used as a method to certify that a group is thin. This involves a mix of theory and computation. More videos on http://v

From playlist Mathematics

Video thumbnail

How to determine the sum of a infinite geometric series

👉 Learn how to find the geometric sum of a series. A series is the sum of the terms of a sequence. A geometric series is the sum of the terms of a geometric sequence. The formula for the sum of n terms of a geometric sequence is given by Sn = a[(r^n - 1)/(r - 1)], where a is the first term

From playlist Series

Related pages

Atom (order theory) | Covering relation | Order embedding | Matroid rank | Complement (set theory) | Matroid minor | Graded poset | Vámos matroid | Finite set | Partially ordered set | Complemented lattice | Duality (order theory) | Adjoint | Semimodular lattice | Matroid | Lattice (order)